Let
\(\lambda\) be an eigenvalue of
\(A\) with corresponding eigenvector
\(\vec{v}\text{,}\) then
\begin{align}
A\vec{v} \amp = \lambda \vec{v}\tag{5.1.1}\\
\amp \quad \quad \text{take the complex conjugate of both sides}\notag\\
\overline{A} \overline{\vec{v}} \amp = \overline{\lambda} \overline{\vec{v}}\notag\\
\amp \quad \quad \text{and since $A$ is real}\notag\\
A \overline{\vec{v}} \amp =
\overline{\lambda} \overline{\vec{v}}\tag{5.1.2}
\end{align}
If we left-multiply (
(5.1.1)) by
\(\overline{\vec{v}}^{\intercal}\text{,}\)
\begin{align}
\overline{\vec{v}}^{\intercal} A\vec{v} \amp = \overline{\vec{v}}^{\intercal}
(\lambda \vec{v})\notag\\
\amp = \lambda \overline{\vec{v}}^{\intercal} \vec{v}\notag\\
\amp \quad\quad \text{and solving for $\lambda$,}\notag\\
\lambda \amp = \frac{\overline{\vec{v}}^{\intercal}
A \vec{v}}{\overline{\vec{v}}^{\intercal}\vec{v}}\tag{5.1.3}
\end{align}
and left-multiply (
(5.1.2)) by
\(\vec{v}^{\intercal}\) to get:
\begin{align*}
\vec{v}^{\intercal} \overline{A}\overline{\vec{v}} \amp = \vec{v}^{\intercal}
(\overline{\lambda} \overline{\vec{v}}) \\
\amp \quad \quad\text{and if we take the transpose of both sides of this}\\
(\vec{v}^{\intercal} \overline{A}\overline{\vec{v}})^{\intercal} \amp =
(\vec{v}^{\intercal} \overline{\lambda} \overline{\vec{v}})^{\intercal} \notag \\
\overline{\vec{v}}^{\intercal} A^{\intercal} \vec{v} \amp = \overline{\lambda}
\overline{\vec{v}}^{\intercal} \vec{v}
\end{align*}
and since
\(A\) is symmetric,
\(A=A^{\intercal}\) and then solving for
\(\overline{\lambda}\)
\begin{equation}
\overline{\lambda} = \frac{\overline{\vec{v}}^{\intercal} A
\vec{v}}{\overline{\vec{v}}^{\intercal} \vec{v} }\tag{5.1.4}
\end{equation}
and since (
(5.1.3)) is the same as (
(5.1.4)), then
\(\lambda = \overline{\lambda}\) so the eigenvalue is real.
Since the eigenvalue of a symmetric matrix is real and the matrix
\(A\) is real, then the eigenvectors are also real.