Skip to main content

Applied Mathematics

Section 5.1 Matrix Properties and Operations

Although we have spent some time with matrices earlier in the text, we summarize these and they will be important throughout this chapter.

Subsection 5.1.1 The Matrix Transpose

Let \(A\) be an \(m\) by \(n\) matrix. The matrix transpose of \(A\) is denoted \(A^{\intercal}\) and
\begin{equation*} (A^{\intercal})_{i,j} = A_{j,i} \end{equation*}
or in other words, the \(i\)th row of the transpose is the \(j\)th column of \(A\text{.}\)

Example 5.1.1.

\begin{equation*} A = \begin{bmatrix} 1 \amp -3 \amp 7 \\ 2 \amp 0 \amp 5 \end{bmatrix} \end{equation*}
\begin{equation*} A^{\intercal} = \begin{bmatrix} 1 \amp 2 \\ -3 \amp 0 \\ 7 \amp 5 \end{bmatrix} \end{equation*}
The matrix \(A^{\intercal}\) is the matrix \(A\) flipped over the diagonal.

Subsection 5.1.2 Symmetric Matrices

We have seen throughout this book examples where a matrix is symmetric in some sense. However, there is a precise definition.

Definition 5.1.3.

A matrix is symmetric if it is square and if \(A= A^{\intercal}\text{.}\)

Example 5.1.4.

The following matrix is symmetric,
\begin{equation*} A = \begin{bmatrix} 1 \amp 2 \amp 0 \\ 2 \amp 3 \amp -4 \\ 0 \amp -4 \amp -5 \end{bmatrix} \end{equation*}
and the following is not
\begin{equation*} A = \begin{bmatrix} 1 \amp 0 \amp -3 \\ 0 \amp 3 \amp 1 \\ -3 \amp 1 \amp 0 \\ 0 \amp 0 \amp 0 \end{bmatrix} \end{equation*}
since it is not square.
Notice that a symmetric matrix has the property that it symmetric over the main diagonal (running from the upper left to lower right).

Subsubsection 5.1.2.1 Eigenvalues of Symmetric Matrices

If we follow the techniques in SectionΒ 4.1, we can find the eigenvalues and eigenvectors of
\begin{equation*} A = \begin{bmatrix} 3 \amp 2 \amp 4 \\ 2 \amp 0 \amp 2 \\ 4 \amp 2 \amp 3 \end{bmatrix} \end{equation*}
then the eigenvalues are \(\lambda=8,-1,-1\) and the corresponding eigenvectors are
\begin{align*} \vec{v}_1 \amp = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \amp \vec{v}_2 \amp = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \amp \vec{v}_3 \amp = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \end{align*}
which are both real eigenvalues and eigenvectors. This fact is (as shown in the next lemma) that the matrix is symmetric.
Proof.
Let \(\lambda\) be an eigenvalue of \(A\) with corresponding eigenvector \(\vec{v}\text{,}\) then
\begin{align} A\vec{v} \amp = \lambda \vec{v}\tag{5.1.1}\\ \amp \quad \quad \text{take the complex conjugate of both sides}\notag\\ \overline{A} \overline{\vec{v}} \amp = \overline{\lambda} \overline{\vec{v}}\notag\\ \amp \quad \quad \text{and since $A$ is real}\notag\\ A \overline{\vec{v}} \amp = \overline{\lambda} \overline{\vec{v}}\tag{5.1.2} \end{align}
If we left-multiply ((5.1.1)) by \(\overline{\vec{v}}^{\intercal}\text{,}\)
\begin{align} \overline{\vec{v}}^{\intercal} A\vec{v} \amp = \overline{\vec{v}}^{\intercal} (\lambda \vec{v})\notag\\ \amp = \lambda \overline{\vec{v}}^{\intercal} \vec{v}\notag\\ \amp \quad\quad \text{and solving for $\lambda$,}\notag\\ \lambda \amp = \frac{\overline{\vec{v}}^{\intercal} A \vec{v}}{\overline{\vec{v}}^{\intercal}\vec{v}}\tag{5.1.3} \end{align}
and left-multiply ((5.1.2)) by \(\vec{v}^{\intercal}\) to get:
\begin{align*} \vec{v}^{\intercal} \overline{A}\overline{\vec{v}} \amp = \vec{v}^{\intercal} (\overline{\lambda} \overline{\vec{v}}) \\ \amp \quad \quad\text{and if we take the transpose of both sides of this}\\ (\vec{v}^{\intercal} \overline{A}\overline{\vec{v}})^{\intercal} \amp = (\vec{v}^{\intercal} \overline{\lambda} \overline{\vec{v}})^{\intercal} \notag \\ \overline{\vec{v}}^{\intercal} A^{\intercal} \vec{v} \amp = \overline{\lambda} \overline{\vec{v}}^{\intercal} \vec{v} \end{align*}
and since \(A\) is symmetric, \(A=A^{\intercal}\) and then solving for \(\overline{\lambda}\)
\begin{equation} \overline{\lambda} = \frac{\overline{\vec{v}}^{\intercal} A \vec{v}}{\overline{\vec{v}}^{\intercal} \vec{v} }\tag{5.1.4} \end{equation}
and since ((5.1.3)) is the same as ((5.1.4)), then \(\lambda = \overline{\lambda}\) so the eigenvalue is real.
Since the eigenvalue of a symmetric matrix is real and the matrix \(A\) is real, then the eigenvectors are also real.
The fact that symmetric matrices have real eigenvalues with be used later in this section.

Subsection 5.1.3 Orthogonal Matrices

An orthogonal matrix, \(Q\) is a square matrix that satisfies \(QQ^{\intercal} =Q^{\intercal}Q=I\text{.}\)
The properties include:
  • The columns of \(Q\) are orthogonal unit vectors.
  • The rows of \(Q\) are orthogonal unit vectors.
  • The inverse of \(Q\) is its transpose or \(Q^{-1} = Q^{\intercal}\text{.}\)
  • The determinant of \(Q\) is \(1\) or \(-1\text{.}\) This can be found by
    \begin{equation*} 1 = \det I = \det (QQ^{\intercal}) = \det(Q) \det(Q^{\intercal}) = \det(Q)^2 \end{equation*}
    So the determinant is \(1\) or \(-1\text{.}\)

Example 5.1.6.

The following are examples of 2 by 2 orthogonal matrices:
\begin{align*} \begin{bmatrix} 0 \amp 1 \\ -1 \amp 0 \end{bmatrix}, \qquad \begin{bmatrix} \frac{\sqrt{2}}{2} \amp -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \amp \frac{\sqrt{2}}{2} \end{bmatrix} \end{align*}
And the following are 3 by 3 orthogonal matrices:
\begin{align*} \begin{bmatrix} \frac{2}{3} \amp -\frac{2}{3} \amp \frac{1}{3}\\[4pt] -\frac{1}{\sqrt{5}} \amp 0 \amp \frac{2}{\sqrt{5}} \\[4pt] \frac{4}{3\sqrt{5}} \amp \frac{5}{3\sqrt{5}} \amp \frac{2}{3\sqrt{5}} \end{bmatrix} \amp\amp \begin{bmatrix} 0 \amp 1 \amp 0 \\ 1 \amp 0 \amp 0 \\ 0 \amp 0 \amp 1 \end{bmatrix} \end{align*}
The matrix on the right is an example of a permutation matrix. Every permutation matrix is an orthogonal matrix.

Subsection 5.1.4 Upper- and Lower-Triangular Matrices

An upper triangle matrix is a matrix (not-necessarily square) such that all elements below the diagonal are 0. A lower triangular matrix is a matrix such that all elements above the diagonal are 0. More precisely,

Definition 5.1.7.

A upper-triangular matrix is an \(m\) by \(n\) matrix \(A\text{,}\) such that \(a_{i,j}=0\) if \(j \lt i\text{.}\) A lower triangular matrix is an \(m\) by \(n\) matrix \(A\) such that \(a_{i,j}=0\) if \(j \gt i\text{.}\)

Example 5.1.8.

The matrix \(L\) below is a lower triangular matrix and \(U\) is an upper triangular matrix:
\begin{align*} L \amp = \begin{bmatrix} 3 \amp 0 \amp 0 \\ 2 \amp -1 \amp 0 \\ 0 \amp 5 \amp 2 \end{bmatrix} \amp U \amp = \begin{bmatrix} 1 \amp -7 \amp -5 \\ 0 \amp 3 \amp 2 \\ 0 \amp 0 \amp -3 \end{bmatrix} \end{align*}
Hopefully that it’s clear that a matrix in echelon form defined in Definition DefinitionΒ 1.3.1 is also upper triangular.

Subsubsection 5.1.4.1 Back Substitution

An advantage to having an upper- or lower-triangular matrix is that solving the matrix is quite straightforward. In the case of a upper-triangular matrix, \(U\) the steps that solve \(U\vec{x}=\vec{b}\) is called back substitution. We will show the steps in an example.
Example 5.1.9.
\begin{align*} U \amp = \begin{bmatrix} 1 \amp -7 \amp -5 \\ 0 \amp 3 \amp 2 \\ 0 \amp 0 \amp -3 \end{bmatrix} \amp \vec{b} \amp = \begin{bmatrix} 2 \\ -5 \\ 6 \end{bmatrix}, \end{align*}
solve \(U\vec{x}=\vec{b}\text{.}\)
Solution.
To illustrate back substitution, we write out the matrix equation as the corresponding equations:
\begin{align*} x_1 -7x_2 -5x_3 \amp = 2 \\ 3x_2 +2x_3 \amp = -5 \\ -3 x_3 \amp = -6 \end{align*}
and solving the 3rd equation above, \(x_3=2\text{.}\) This is then substituted into the 2nd equation to get:
\begin{equation*} 3x_2 +2(2) = -5 \end{equation*}
and solving leads to \(x_2 =-3\text{.}\) And then lastly, \(x_2\) and \(x_3\) are substituted into the first equation to get:
\begin{equation*} x_1 -7(-3)-5(2)=2 \end{equation*}
and solving this leads to \(x_1=13\text{.}\) Thus the solution to \(U\vec{x}=\vec{b}\) is
\begin{equation*} \vec{x} = \begin{bmatrix} 13 \\ -3 \\ 2 \end{bmatrix} \end{equation*}
In general, back substitution works the same way.
Remark 5.1.10.
To solve the matrix equation \(U\vec{x}=\vec{b}\text{,}\) where \(U\) is an \(n\) by \(n\text{,}\) non-singular, upper-triangular matrix, first
\begin{equation*} x_n = \frac{b_n}{a_{nn}} \end{equation*}
and assume that \(x_{j+1}, x_{j+2}, \ldots, x_n\) are known. Then,
\begin{equation*} x_j = \frac{1}{a_{jj}} \bigl(b_j - \sum_{k=j+1}^n a_{jk} x_k\bigr) \qquad \text{for $j=n-1,n-2,\ldots,1$} \end{equation*}
and it is important that the steps are performed in reverse order. This technique is called back substitution.

Subsubsection 5.1.4.2 Forward Substitution

Similar to back substitution, if a matrix is in lower-diagonal form, then the matrix equation \(L\vec{y}=\vec{c}\) can be solved in a straightforward manner. We first look at an example:
Example 5.1.11.
Solve \(L\vec{y}=\vec{c}\) if
\begin{align*} L \amp = \begin{bmatrix} 3 \amp 0 \amp 0 \\ 2 \amp -1 \amp 0 \\ 0 \amp 5 \amp 2 \end{bmatrix} \amp \vec{c} \amp = \begin{bmatrix} 9 \\ 8 \\2 \end{bmatrix} \end{align*}
Solution.
We first write down the equations that correspond to these:
\begin{align*} 3y_1 \amp = 9 \\ 2y_1-y_2 \amp = 8 \\ 5y_2 + 2y_3 \amp = 2 \end{align*}
Solving the first equation is \(y_1=3\text{.}\) Then substitute this into the second equation to get:
\begin{equation*} 2(3) - y_2 = 8 \end{equation*}
which has the solution \(y_2=-2\text{.}\) Lastly, we substitute these into the last equation to get:
\begin{equation*} 5(-2) +2y_3 = 2 \end{equation*}
which has the solution \(y_3=6\text{.}\) Thus the solution to the matrix equation is
\begin{equation*} \vec{y} =\begin{bmatrix} 3 \\ -2 \\ 6 \end{bmatrix} \end{equation*}
Notice in this example, we solved the unknown’s in the \(\vec{y}\) vector in order. This is because of the structure of the lower-triangular matrix and hence why this technique is called forward substitution.
Remark 5.1.12.
To solve the matrix equation \(L\vec{y}=\vec{c}\text{,}\) where \(L\) is an \(n\) by \(n\text{,}\) nonsingular, lower-triangular matrix, first,
\begin{equation*} y_1 = \frac{c_1}{a_{11}} \end{equation*}
and then assume that \(y_1, y_2, \ldots, y_{j-1}\) are known. Then
\begin{equation*} y_j = \frac{1}{a_{jj}} \bigl(b_j - \sum_{k=1}^{j-1} a_{jk} x_k\bigr) \qquad \text{for $j=2,3, \ldots n$} \end{equation*}
and note that in this case, the steps are performed in order. This technique is called forward substitution.