Skip to main content

Applied Mathematics

Section 4.3 Symmetric and Orthogonal Matrices and Quadratic Forms

Definition 4.3.1.

A square matrix \(A\) is said to be symmetric if \(A=A^T\text{.}\)

Proof.

Let \(\lambda\) be an eigenvalue of \(A\) with corresponding eigenvector \(\vec{v}\) .
\begin{equation*} A \vec{v} = \lambda \vec{v} \end{equation*}
Right multiply by \(\vec{v}^T\)
\begin{equation*} \vec{v}^T A \vec{v} = \lambda \vec{v}^T \vec{v} \end{equation*}
Take the complex conjugate of the eigenvector equation above:
\begin{align*} \overline{\vec{v}}^T A^T \amp = \overline{\lambda} \overline {\vec{v}}^T \\ \overline{\vec{v}}^T A \amp = \overline{\lambda} \overline {\vec{v}}^T \end{align*}
left mulitply by \(\vec{v}\)
\begin{align*} \overline{\vec{v}}^T A \vec{v} \amp = \overline{\lambda} \overline{\vec{v}}^T \vec{v} \\ \overline{\vec{v}}^T \lambda \vec{v} \amp = \overline{\lambda} \overline{\vec{v}}^T \vec{v} \\ \lambda \overline{\vec{v}}^T \vec{v} \amp = \overline{\lambda} \overline{\vec{v}}^T \vec{v} \end{align*}
so \(\lambda = \overline{\lambda}\text{,}\) hence it is real.

Definition 4.3.4.

A square matrix \(Q=[\vec{q}_1\;\; \vec{q}_2\;\;\vec{q}_3\;\; \cdots\;\;\vec{q}_n] \) is said to be orthogonal if
\begin{equation*} \vec{q}_i^T \vec{q}_j = 0 \end{equation*}
for all \(i \neq j\text{.}\) If in addition that \(\vec{q}_i^T\vec{q}_i = 1\) for all \(i\) then the matrix is also said to be orthonormal.

Subsection 4.3.1 Orthogonal Transformations

Definition 4.3.6.

Let \(Q\) be a linear transformation from \(\mathbb{R}^n\) to \(\mathbb{R}^n\text{.}\) If \(Q\) is an orthonormal matrix, then the linear transformation is said to be an orthogonal transformation.

Example 4.3.7.

Show that the rotational transformation given in section 7.10 is an orthogonal transformation.
Solution.
Show that
\begin{equation*} Q = \begin{bmatrix} \cos \theta \amp -\sin \theta \\ \sin \theta \amp \cos \theta \end{bmatrix} \end{equation*}
satisfies \(Q^T = Q^{-1}\text{.}\)

Definition 4.3.8.

A quadratic form is a polynomial function in \(x_1, x_2, \ldots, x_n\) such that
\begin{equation*} q(\vec{x}) = a_1 x_1^2 + a_2 x_2^2 + \cdots a_n x_n^2 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + \cdots \end{equation*}
Note that a quadratic form can have squared terms and products between only two variables.

Example 4.3.9.

A quadratic form can be written as
\begin{equation*} q(\vec{x}) = \vec{x}^T A \vec{x} \end{equation*}
for some symmetric matrix \(A\) and \(\vec{x}=[x_1\;\;x_2 \;\; \cdots \;\; x_n]^T\text{.}\)

Example 4.3.10.

Find the matrix \(A\) for the quadratic forms above:
Solution.
\begin{align*} A \amp= \begin{bmatrix} 4 \amp2 \\ 2 \amp 7 \end{bmatrix}\\ \vec{x}^T A \vec{x} \amp = [x_1 \;\; x_2] \begin{bmatrix} 4 \amp2 \\ 2 \amp 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\\ \amp = [x_1 \;\; x_2] \begin{bmatrix} 4x_1 + 2 x_2 \\ 2 x_1 + 7 x_2 \end{bmatrix}\\ \amp = 4x_1^2 + 2 x_1 x_2 + 2 x_1 x_2 + 7 x_2^2 \end{align*}
And for the second quadratic form:
\begin{equation*} A = \begin{bmatrix} 1 \amp -1 \amp 3/2 \\ -1 \amp 4 \amp 1/2 \\ 3/2 \amp 1/2 \amp 9 \end{bmatrix} \end{equation*}

Subsection 4.3.2 Principle Axes of Quadratic Forms

For the quadratic form:
\begin{equation*} q(\vec{x}) = \vec{x}^T A \vec{x} \end{equation*}
if \(A = P D P^{-1}\) can be written:
\begin{equation*} q(\vec{x}) = \vec{x}^T P D P^{-1} \vec{x} \end{equation*}
and since \(A\) is symmetric then the eigenvectors form an orthonormal basis so \(P^{-1} = P^T\text{.}\)
\begin{equation*} q(\vec{x}) =\vec{y}^T D \vec{y} \end{equation*}
where \(\vec{y}= P^T \vec{x}\text{.}\) Example of ellipse/contour plot.