In the case of
\(T\text{,}\) we will expand across the first row and use the formula for the
\(2\times
2\) determinant.
\begin{align*}
|T| \amp = (-1)^{1+1} (3) \begin{vmatrix}4 \amp 0 \\ 2 \amp 5
\end{vmatrix} + (-1)^{1+2} (0) \begin{vmatrix}
1 \amp 0 \\ 0 \amp 5
\end{vmatrix} + (-1)^{1+3} (2) \begin{vmatrix}
1 \amp 4 \\ 0 \amp 2
\end{vmatrix} \\
\amp = 3 (20) + (2) (2-0) = 64
\end{align*}
and for
\(S\text{,}\) weβll expand down the 2nd column because all but one is zero. And because of this, I wonβt show the cofactors of
\(T_{1,2}, T_{1,3}\) and
\(T_{1,4}\text{.}\)
\begin{align*}
|S| \amp = (-1)^{1+2} (1) \begin{vmatrix}
2 \amp 2 \amp 7 \\
0 \amp 6 \amp 8 \\
1 \amp 10 \amp 6
\end{vmatrix} + 0 + 0 + 0
\end{align*}
and now to find this
\(3\times 3\) determinant, expand about the 2nd row
\begin{align*}
|S| \amp = (-1) \bigl( (-1)^{2+2} (6) \begin{vmatrix}
2 \amp 7 \\
1 \amp 6
\end{vmatrix} + (-1)^{2+3} (8) \begin{vmatrix}
2 \amp 2 \\
1 \amp 10
\end{vmatrix} \bigr)
\end{align*}
and now use the formula for
\(2 \times 2\) determinants.
\begin{equation*}
|S| = -(6 (12-7) - 8 (20-2)) = -(30- 144) =114
\end{equation*}