First, find the determinant by expansion:
\begin{align*}
|A| \amp = 1 \begin{vmatrix}
-2 \amp 1 \\ -2 \amp 5
\end{vmatrix} + 2 \begin{vmatrix}
0 \amp -2 \\ 2 \amp -2
\end{vmatrix} \\
\amp = (-10-(-2)) + 2 (0-(-4)) = -8 + 8 = 0
\end{align*}
and therefore by Theorem
TheoremΒ 2.9.3, there is a nontrivial solution to
\(A \vec{x} = \vec{0}\)
Next, weβll solve the matrix equation by Gaussβ method.
\begin{align*}
\amp \qquad \left[\begin{array}{rrr|r}
1 \amp 0 \amp 2 \amp 0 \\
0 \amp -2 \amp 1 \amp 0 \\
2 \amp -2 \amp 5 \amp 0
\end{array}\right] \\
-2 R_1 + R_3 \rightarrow R_3
\amp \qquad \left[\begin{array}{rrr|r}
1 \amp 0 \amp 2 \amp 0 \\
0 \amp -2 \amp 1 \amp 0 \\
0 \amp -2 \amp 1 \amp 0
\end{array}\right] \\
-R_2 + R_3 \rightarrow R_3
\amp \qquad \left[\begin{array}{rrr|r}
1 \amp 0 \amp 2 \amp 0 \\
0 \amp -2 \amp 1 \amp 0 \\
0 \amp 0 \amp 0 \amp 0
\end{array}\right]
\end{align*}
The resulting equations are
\begin{align*}
x_1 + 2x_3 \amp = 0 \\
-2x_2 + x_3 \amp = 0
\end{align*}
\begin{align*}
x_1 \amp = -2x_3 \\
x_2 \amp = \frac{1}{2} x_3
\end{align*}
\begin{equation*}
\left\{ \begin{bmatrix}
-2 \\ 1/2 \\ 1
\end{bmatrix} x_3 \; | \; x_3 \in \mathbb{R} \right\}
\end{equation*}
This shows directly that the matrix equation
\(A\vec{x}=\vec{0}\) does not have a trivial solution.