First, we solve for the eigenvectors by solving
\(|A-\lambda I|=0\text{,}\)
\begin{align*}
|A-\lambda I| \amp = \begin{vmatrix}
1-\lambda \amp 0 \amp 2 \\
2 \amp -\lambda \amp 4 \\
-1 \amp 0 \amp -2- \lambda
\end{vmatrix} \\
\amp = -\lambda \begin{vmatrix}
1-\lambda \amp 2 \\
-1 \amp -2-\lambda
\end{vmatrix} = -\lambda \bigl( (1-\lambda)(-2-\lambda)+2 \bigr) \\
\amp = -\lambda (\lambda^2 - \lambda -2 + 2) = -\lambda^3 - \lambda^2
\end{align*}
and this is 0, when
\(\lambda=0\) and
\(\lambda = -1\text{.}\) Next, find the eigenvectors. The eigenvectors with
\(\lambda=0\) are found by finding the null space of
\(A-0I\text{:}\)
\begin{align*}
\amp \qquad \begin{bmatrix}
1 \amp 0 \amp 2 \\
2 \amp 0 \amp 4 \\
-1 \amp 0 \amp -2
\end{bmatrix} \\
\begin{array}{r}
-2R_1 + R_2 \rightarrow R_2 \\
R_1+R_3 \rightarrow R_3
\end{array}
\amp \qquad
\begin{bmatrix}
1 \amp0 \amp 2 \\
0 \amp 0 \amp 0 \\
0 \amp 0 \amp 0
\end{bmatrix}
\end{align*}
and since the only equation is
\(x_1 +2x_3=0\text{,}\) both
\(x_2\) and
\(x_3\) are free variables and the solution space (therefore the null space) can be written:
\begin{equation*}
\left\{ \begin{bmatrix}
0 \\ 1 \\ 0
\end{bmatrix} x_2 + \begin{bmatrix}
-2 \\ 0 \\ 1
\end{bmatrix} x_3 \; | \; x_2, x_3 \in \mathbb{R} \right\}
\end{equation*}
This shows that the vectors
\begin{align*}
\vec{v}_1 \amp = \begin{bmatrix}
0 \\ 1\\ 0
\end{bmatrix}\amp \vec{v}_2 \amp = \begin{bmatrix}
-2 \\ 0 \\ 1
\end{bmatrix}
\end{align*}
are both eigenvectors associated with
\(\lambda=0\text{.}\) The eigenvectors associated with
\(\lambda
= -1\) is found by seeking the null space of
\(A-I\text{:}\)
\begin{align*}
\amp \qquad \begin{bmatrix}
2 \amp 0 \amp 2 \\
2 \amp 1 \amp 4 \\
-1 \amp 0 \amp -1
\end{bmatrix} \\
\frac{1}{2}R_1 \rightarrow R_1 \amp \qquad
\begin{bmatrix}
1 \amp 0 \amp 1 \\
2 \amp 1 \amp 4 \\
-1 \amp 0 \amp -1
\end{bmatrix} \\
\begin{array}{r}
-2R_1 + R_2 \rightarrow R_2, \\
R_1 + R_3 \rightarrow R_3,
\end{array}
\amp \qquad \begin{bmatrix}
1 \amp 0 \amp 1 \\
0 \amp 1 \amp 2 \\
0 \amp 0 \amp 0
\end{bmatrix}
\end{align*}
\begin{align*}
x_1 \amp = -x_3 \\
x_2 \amp = -2x_3
\end{align*}
so the solution set (and the null space) is
\begin{equation*}
\left\{ \begin{bmatrix}
-1 \\ -2 \\ 1
\end{bmatrix} x_3 \; \ \; x_3 \in \mathbb{R} \right\}
\end{equation*}
so the eigenvector associated with
\(\lambda_3 =-1\) is
\begin{equation*}
\begin{bmatrix}
-1 \\ -2 \\ 1
\end{bmatrix}
\end{equation*}
In summary, for this matrix, there are two real eigenvalues. The first has two corresponding eigenvectors and the second has a single corresponding eigenvector. These are
\begin{align*}
\lambda_1 \amp = 0 \amp \vec{v}_1 \amp = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \amp \vec{v}_2 \amp = \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}\\
\lambda_3 \amp = -1 \amp \vec{v}_3 \amp = \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}
\end{align*}