Weβll find the inverse of the matrix using row operations on the matrix
\([A ~ | ~ I]\)
\begin{equation*}
\begin{aligned} \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 2 \amp 0 \amp 2 \amp 1 \amp 0 \amp 0 \amp 0\\ 0 \amp -2 \amp 1 \amp 2 \amp 0 \amp 1 \amp 0 \amp 0\\ 1 \amp 3 \amp 0 \amp 1 \amp 0 \amp 0 \amp 1 \amp 0\\ 0 \amp 1 \amp -1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1\\ \end{array} \right] \\ -R_1+R_3 \to R_3 \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 2 \amp 0 \amp 2 \amp 1 \amp 0 \amp 0 \amp 0\\ 0 \amp -2 \amp 1 \amp 2 \amp 0 \amp 1 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \amp -1 \amp -1 \amp 0 \amp 1 \amp 0\\ 0 \amp 1 \amp -1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1\\ \end{array} \right] \\ R_2 \leftrightarrow R_3 \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 2 \amp 0 \amp 2 \amp 1 \amp 0 \amp 0 \amp 0\\ 0 \amp 1 \amp 0 \amp -1 \amp -1 \amp 0 \amp 1 \amp 0\\ 0 \amp -2 \amp 1 \amp 2 \amp 0 \amp 1 \amp 0 \amp 0\\ 0 \amp 1 \amp -1 \amp 0 \amp 0 \amp 0 \amp 0 \amp 1\\ \end{array} \right] \\ \begin{array}{r} -2R_2 + R_1 \to R_1, \\ 2R_2 + R_3 \to R_3, \\ -R_2 + R_4 \to R_4 \end{array} \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 0 \amp 0 \amp 4 \amp 3 \amp 0 \amp -2 \amp 0\\ 0 \amp 1 \amp 0 \amp -1 \amp -1 \amp 0 \amp 1 \amp 0\\ 0 \amp 0 \amp 1 \amp 0 \amp -2 \amp 1 \amp 2 \amp 0\\ 0 \amp 0 \amp -1 \amp 1 \amp 1 \amp 0 \amp -1 \amp 1\\ \end{array} \right] \\ R_3 + R_4 \to R_4 \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 0 \amp 0 \amp 4 \amp 3 \amp 0 \amp -2 \amp 0\\ 0 \amp 1 \amp 0 \amp -1 \amp -1 \amp 0 \amp 1 \amp 0\\ 0 \amp 0 \amp 1 \amp 0 \amp -2 \amp 1 \amp 2 \amp 0\\ 0 \amp 0 \amp 0 \amp 1 \amp -1 \amp 1 \amp 1 \amp 1\\ \end{array} \right] \\ \begin{array}{r} R_4 + R_2 \to R_2 \\ -4R_4 + R_1 \to R_1 \end{array} \amp \qquad \left[\begin{array}{rrrr|rrrr} 1 \amp 0 \amp 0 \amp 0 \amp 7 \amp -4 \amp -6 \amp -4\\ 0 \amp 1 \amp 0 \amp 0 \amp -2 \amp 1 \amp 2 \amp 1\\ 0 \amp 0 \amp 1 \amp 0 \amp -2 \amp 1 \amp 2 \amp 0\\ 0 \amp 0 \amp 0 \amp 1 \amp -1 \amp 1 \amp 1 \amp 1\\ \end{array} \right] \end{aligned}
\end{equation*}
We need to find the elementary matrices of each of these row operations and then the inverses.
\begin{equation*}
\begin{aligned} E_1 \amp = E_{-R_1+R_3} \amp E_2 \amp = E_{R_2 \leftrightarrow R_3} \amp E_3 \amp = E_{(-2R_2+R_1)} \\ E_4 \amp = E_{2R_2 + R_3} \amp E_5 \amp = E_{2R_2 + R_3} \amp E_6 \amp = E_{-R_2 + R_4} \\ E_7 \amp = E_{R_3 + R_4} \amp E_8 \amp = E_{R_4 + R_2} \amp E_9 \amp = E_{-4R_4+R_1} \end{aligned}
\end{equation*}