First, we write \([\;A\;|\;I\;]\) and then use the Gauss-Jordon Method.
\begin{align*}
\amp \qquad \left[\begin{array}{rrr|rrr}
3 \amp 3 \amp -1 \amp 1 \amp 0 \amp 0\\
2 \amp 1 \amp -3 \amp 0 \amp 1 \amp 0\\
0 \amp 2 \amp 5 \amp 0 \amp 0 \amp 1\\
\end{array}\right]
\end{align*}
Since we want a 1 in the upper right and donβt want fractions, try
\begin{align*}
-R_2 + R_1 \rightarrow R_2 \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 2 \amp 2 \amp 1 \amp -1 \amp 0\\
2 \amp 1 \amp -3 \amp 0 \amp 1 \amp 0\\
0 \amp 2 \amp 5 \amp 0 \amp 0 \amp 1\\
\end{array}\right]
\end{align*}
And zero out the rest of the first column.
\begin{align*}
-2 R_1 + R_2 \rightarrow R_2 \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 2 \amp 2 \amp 1 \amp -1 \amp 0\\
0 \amp -3 \amp -7 \amp -2 \amp 3 \amp 0\\
0 \amp 2 \amp 5 \amp 0 \amp 0 \amp 1\\
\end{array}\right]
\end{align*}
Again, to avoid fractions, try
\begin{align*}
2 R_3 + R_2 \rightarrow R_2 \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 2 \amp 2 \amp 1 \amp -1 \amp 0\\
0 \amp 1 \amp 3 \amp -2 \amp 3 \amp 2\\
0 \amp 2 \amp 5 \amp 0 \amp 0 \amp 1\\
\end{array}\right]
\end{align*}
And zero out the other elements in the 2nd column.
\begin{align*}
\begin{array}{r}
-2 R_2 + R_3 \rightarrow R_3 \\
- 2R_2 + R_1 \rightarrow R_1
\end{array} \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 0 \amp -4 \amp 5 \amp -7 \amp -4\\
0 \amp 1 \amp 3 \amp -2 \amp 3 \amp 2\\
0 \amp 0 \amp -1 \amp 4 \amp -6 \amp -3\\
\end{array}\right]
\end{align*}
Next, we need a 1 where the
\(-1\) is.
\begin{align*}
-R_3 \rightarrow R_3 \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 0 \amp -4 \amp 5 \amp -7 \amp -4\\
0 \amp 1 \amp 3 \amp -2 \amp 3 \amp 2\\
0 \amp 0 \amp 1 \amp -4 \amp 6 \amp 3\\
\end{array}\right]
\end{align*}
And lastly zero out the rest of the 3rd column.
\begin{align*}
\begin{array}{r}
-3 R_3 + R_2 \rightarrow R_2 \\
4 R_3 + R_1 \rightarrow R_1
\end{array} \amp \qquad
\left[\begin{array}{rrr|rrr}
1 \amp 0 \amp 0 \amp -11 \amp 17 \amp 8\\
0 \amp 1 \amp 0 \amp 10 \amp -15 \amp -7\\
0 \amp 0 \amp 1 \amp -4 \amp 6 \amp 3\\
\end{array}\right]
\end{align*}
Since we have found the 3 by 3 identity on the left, the inverse is on the right or
\begin{equation*}
A^{-1} =
\begin{bmatrix}
-11 \amp 17 \amp 8 \\
10 \amp -15 \amp -7 \\
-4 \amp 6 \amp 3\\
\end{bmatrix}
\end{equation*}