Briefly, we need to diagonalize both
\(A\) and
\(B\text{.}\) In example
ExampleΒ 5.3.4, we found that the eigenvalues of
\(A\) are
\(\lambda_1=2\) and
\(\lambda_2=3\) with associated eigenvectors
\(\vec{v}_1=[1\;\;-1]^{\intercal}\) and
\(\vec{v}_2=[1\;\;-2]^{\intercal}\text{.}\) Using the techniques of section
SectionΒ 4.1, the eigenvalues of
\(B\) are
\(\lambda_1=2\) and
\(\lambda_2=3\) with associated eigenvectors
\(\vec{v}_1=[1\;\;4]^{\intercal}\) and
\(\vec{v}_2=[0\;\;1]^{\intercal}\text{.}\) Letting
\(D_1\) and
\(P_1\) be the matrices associated with
\(A\) and
\(D_2\) and
\(P_2\text{,}\) those associated with
\(B\text{,}\) let
\begin{equation*}
D_1 = D_2 = \begin{bmatrix}
3 \amp 0 \\ 0 \amp 2
\end{bmatrix}
\end{equation*}
\begin{align*}
P_1 \amp = \begin{bmatrix}
1 \amp 1 \\
-1 \amp -2
\end{bmatrix}, \amp P_2 \amp = \begin{bmatrix}
2 \amp 1 \\
1 \amp 0
\end{bmatrix}
\end{align*}
\begin{equation*}
S = P_{2} P_1^{-1} = \begin{bmatrix}
2 \amp 1 \\ 1 \amp 0
\end{bmatrix} \begin{bmatrix}
-1 \amp -1\\
2 \amp 1\\
\end{bmatrix}= \begin{bmatrix}
0 \amp -1 \\
-1 \amp -1
\end{bmatrix}
\end{equation*}