Take the inner product of
\(f\) with each element in the set from
ExampleΒ 6.1.28. We will start with the constant function and use
(6.2.1).
\begin{align*}
\biggl\langle \frac{1}{\sqrt{2\pi}}, f(x) \biggr\rangle \amp = \biggl\langle
\frac{1}{\sqrt{2\pi}}, a_0 + \sum_{n=1}^{\infty} (a_n \cos n x + b_n \sin nx)
\biggr\rangle \\
\frac{1}{\sqrt{2\pi}} \langle 1, f(x) \rangle \amp = \frac{1}{\sqrt{2\pi}}
\left(\langle a_0,1 \rangle + \sum_{n=1}^{\infty} \left(a_n \langle \cos nx, 1 \rangle +
b_n \langle \sin nx , 1 \rangle \right)\right) \\
\amp \qquad \text{since the inner product of 1 with the trig functions are 0}\\
\amp = \frac{a_0}{\sqrt{2\pi}} \langle 1, 1 \rangle
\end{align*}
and solving for
\(a_0\text{,}\)
\begin{equation*}
a_ 0 = \frac{\langle f(x),1 \rangle}{\langle 1,1 \rangle} = \frac{1}{2\pi}
\int_{-\pi}^{\pi} f(x) \, dx
\end{equation*}
Next, take the inner product of (
(6.2.1)) with
\(\frac{1}{\sqrt{\pi}}\cos
nx\text{.}\)
\begin{align*}
\biggl\langle \frac{1}{\sqrt{\pi}}\cos nx ,f(x) \biggr \rangle \amp =
\biggl\langle \frac{1}{\sqrt{\pi}}\cos nx, a_0 + \sum_{m=1}^{\infty} (a_m \cos m x +
b_m \sin mx) \biggr\rangle \\
\frac{1}{\sqrt{\pi}} \langle \cos nx, f(x) \rangle \amp = \frac{1}{\sqrt{\pi}}
\biggl(a_0 \langle 1, \cos nx \rangle + \sum_{m=1}^{\infty} \bigl( a_m \langle \cos
mx, \cos n x \rangle \\
\amp \phantom{\frac{1}{\sqrt{\pi}} \biggl(a_0 \langle 1, \cos nx \rangle +
\sum_{m=1}^{\infty}} \quad + b_m \langle \sin mx, \cos nx \rangle \bigr) \biggr),
\end{align*}
All of the inner products on the right side are zero except when
\(n=m\text{.}\) Canceling a
\(\sqrt{\pi}\text{,}\) the result is
\begin{equation*}
\langle \cos nx, f(x) \rangle = a_n \langle \cos nx, \cos nx \rangle
\end{equation*}
or solving for
\(a_n\text{,}\)
\begin{equation*}
a_n = \frac{\langle f(x), \cos nx \rangle}{\langle \cos nx, \cos nx \rangle} =
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx
\end{equation*}
Lastly, take the inner product of
(6.2.1) with
\(\frac{1}{\sqrt{\pi}}\sin
nx\text{.}\)
\begin{align*}
\biggl\langle \frac{1}{\sqrt{\pi}}\sin nx ,f(x) \biggr \rangle \amp =
\biggl\langle \frac{1}{\sqrt{\pi}}\sin nx, a_0 + \sum_{m=1}^{\infty} (a_m \cos m x +
b_m \sin mx) \biggr\rangle \\
\frac{1}{\sqrt{\pi}} \langle \sin nx, f(x) \rangle \amp = \frac{1}{\sqrt{\pi}}
\biggl(a_0 \langle 1, \sin nx \rangle + \sum_{m=1}^{\infty} \bigl( a_m \langle \cos
mx, \sin n x \rangle \\
\amp \phantom{\frac{1}{\sqrt{\pi}} \biggl(a_0 \langle 1, \cos nx \rangle +
\sum_{m=1}^{\infty}} + b_m \langle \sin mx, \sin nx \rangle \bigr) \biggr),
\end{align*}
All of the inner products on the right side are zero except when
\(n=m\text{.}\) Canceling a
\(\sqrt{\pi}\text{,}\) the result is
\begin{equation*}
\langle \sin nx, f(x) \rangle = b_n \langle \sin nx, \sin nx \rangle
\end{equation*}
and solving for
\(b_n\text{,}\)
\begin{equation*}
b_n = \frac{\langle f(x), \sin nx \rangle}{\langle \sin nx, \sin nx \rangle} =
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx
\end{equation*}