\begin{equation*}
\{ (x_1,x_2,x_3,x_4,x_5) = (9x_4-46,x_2,-13,x_4,9) \; | \; x_2, x_4 \in \mathbb{R}\}
\end{equation*}
with the free variables
\(x_2\) and
\(x_4\text{.}\) This can be written as a vector as
\begin{equation*}
\begin{bmatrix}
9x_4 - 46 \\
x_2 \\
-13 \\
x_4 \\
9
\end{bmatrix} =
\begin{bmatrix}
0 \\ 1 \\ 0 \\ 0 \\0
\end{bmatrix} x_2 +
\begin{bmatrix}
9 \\ 0 \\ 0 \\ 1 \\ 0
\end{bmatrix} x_4 +
\begin{bmatrix}
-46 \\ 0 \\ -13 \\ 0 \\ 9
\end{bmatrix}
\end{equation*}
Thus the solution can be written:
\begin{equation*}
\left\{ \begin{bmatrix}
0 \\ 1 \\ 0 \\ 0 \\0
\end{bmatrix} x_2 +
\begin{bmatrix}
9 \\ 0 \\ 0 \\ 1 \\ 0
\end{bmatrix} x_4 +
\begin{bmatrix}
-46 \\ 0 \\ -13 \\ 0 \\ 9
\end{bmatrix} \; | \; x_2, x_4 \in \mathbb{R} \right\}.
\end{equation*}
This is the most general form of the solution to the linear system in this example and as before one can write down solutions with specific values of free variables. For example, if
\(x_2\) and
\(x_4\) are both 0, the the point
\((-46,0,-13,0,9)\) is a solution to the linear system. (Try it!) This is an example of a particular solution as we define below.