Let
\begin{align*}
A \amp = \begin{bmatrix}
1 \amp -1 \amp 3 \\
2 \amp 7 \amp 3
\end{bmatrix} \amp
B \amp = \begin{bmatrix}
3 \amp 2 \amp -7 \\ 11 \amp 2 \amp 0
\end{bmatrix}
\end{align*}
Then the sum \(A+B\) is found by adding the individual elements.
\begin{align*}
A+B \amp = \begin{bmatrix}
1+3 \amp -2+2 \amp 3-7\\ 2+11 \amp 7+2 \amp 3+0
\end{bmatrix}= \begin{bmatrix}
4 \amp 1 \amp -4 \\ 13 \amp 9 \amp 3
\end{bmatrix}
\end{align*}
similarly we can subtract in the same way
\begin{align*}
A-B \amp =
\begin{bmatrix}
1-3 \amp -1-2 \amp 3-(-7)\\
2-11 \amp 7-2 \amp 3-0
\end{bmatrix}=
\begin{bmatrix}
-2 \amp -3 \amp 10 \\
-9 \amp 5 \amp 3
\end{bmatrix}
\end{align*}