We solve a linear combination of these vectors and set them equal to the zero vector.
\begin{equation*}
c_1\begin{bmatrix}
1 \\ 0
\end{bmatrix}+c_2 \begin{bmatrix}
1 \\ 1
\end{bmatrix}+c_3 \begin{bmatrix}
0 \\1
\end{bmatrix} = \begin{bmatrix}
0 \\ 0
\end{bmatrix}
\end{equation*}
or the linear system in terms of the
\(c\)βs
\begin{align*}
c_1 + c_2 \amp = 0 \\
c_2 + c_3 \amp = 0
\end{align*}
and in this case, let
\(c_3\) be a free variable, then the solution
\begin{align*}
c_2 \amp = -c_3 \\
c_1 \amp = -c_2 = c_3
\end{align*}
Since this is not the trivial solution, then these vectors are linearly dependent. The relationship between the constants shows the dependence. That is
\begin{equation*}
c_3\begin{bmatrix}
1 \\ 0
\end{bmatrix}-c_3 \begin{bmatrix}
1 \\ 1
\end{bmatrix}+c_3 \begin{bmatrix}
0 \\1
\end{bmatrix} = \begin{bmatrix}
0 \\ 0
\end{bmatrix}
\end{equation*}
or as a simple relationship
\begin{equation*}
\begin{bmatrix}
1 \\ 1
\end{bmatrix} - \begin{bmatrix}
1 \\ 0
\end{bmatrix} = \begin{bmatrix}
0 \\ 1
\end{bmatrix}
\end{equation*}