We can solve this by solving the homogeneous matrix equation.
\begin{align*}
\amp \qquad \left[\begin{array}{rrr|r}
1 \amp 2 \amp 3\amp 0 \\
2 \amp 3 \amp -1 \amp 0
\end{array}\right]
\end{align*}
and performing the row operation
\(-2R_1+R_2 \rightarrow R_2\)
\begin{align*}
\amp \qquad \left[\begin{array}{rrr|r}
1 \amp 2 \amp 3 \amp 0 \\
0 \amp -1 \amp -7 \amp 0
\end{array}\right]\\
2R_2 + R_1 \rightarrow R_1 \amp \qquad
\left[\begin{array}{rrr|r}
1 \amp 0 \amp -11 \amp 0 \\
0 \amp -1 \amp -7 \amp 0
\end{array}\right] \\
-R_2 \rightarrow R_2 \amp \qquad
\left[\begin{array}{rrr|r}
1 \amp 0 \amp -11 \amp 0 \\
0 \amp 1 \amp 7 \amp 0
\end{array}\right]
\end{align*}
results in the reduced row-echelon form. The resulting equations are
\begin{align*}
x_1 -11 x_3 \amp = 0 \\
x_2 +7x_3 \amp = 0
\end{align*}
and the solution set can be written as in vector form:
\begin{equation*}
\left\{ \begin{bmatrix}
-11 \\ 7 \\ 1
\end{bmatrix} x_3 \; | \; x_3 \in \mathbb{R} \right\}
\end{equation*}
and this set is the null space of the matrix. The null space is
\begin{equation*}
\text{span} \left(\left\{\begin{bmatrix}
-11 \\ 7 \\ 1
\end{bmatrix}\right\}\right)
\end{equation*}
and therefore the dimension of the null space is
\(1\text{,}\) and thus the nullity of
\(A\) is
\(1\text{.}\)