First, note that if either
\(\boldsymbol{u} = \boldsymbol{0}\) or
\(\boldsymbol{v} = \boldsymbol{0}\text{,}\) then then
(1.6.1) holds.
Therefore, assume that neither
\(\boldsymbol{u}\) nor
\(\boldsymbol{v}\) is the zero vector. Then create the vector
\begin{equation*}
||\boldsymbol{u}|| \boldsymbol{v} - ||\boldsymbol{v}||\boldsymbol{u}.
\end{equation*}
The square of the length of this is nonnegative.
\begin{align}
0 \leq \amp ||(||\boldsymbol{u}|| \boldsymbol{v} - ||\boldsymbol{v}||\boldsymbol{u})||^2 \notag\\
\amp = (||\boldsymbol{u}|| \boldsymbol{v} - ||\boldsymbol{v}||\boldsymbol{u}) \cdot (||\boldsymbol{u}|| \boldsymbol{v} - ||\boldsymbol{v}||\boldsymbol{u})\notag\\
\amp = (||\boldsymbol{u} || \boldsymbol{v}) \cdot (||\boldsymbol{u}|| \boldsymbol{v}) - (||\boldsymbol{u}|| \boldsymbol{v}) \cdot (||\boldsymbol{v}|| \boldsymbol{u})
- (||\boldsymbol{v} || \boldsymbol{u}) \cdot (||\boldsymbol{u}|| \boldsymbol{v}) + (||\boldsymbol{v}|| \boldsymbol{u}) \cdot (||\boldsymbol{v}|| \boldsymbol{u})\notag\\
\amp \qquad \qquad\text{using properties of the dot product}\notag\\
\amp = ||\boldsymbol{u}||^2 (\boldsymbol{v} \cdot \boldsymbol{v}) - 2 (||\boldsymbol{u}||\boldsymbol{v} \cdot ||\boldsymbol{v}|| \boldsymbol{u})
+ ||\boldsymbol{v}||^2 (\boldsymbol{u} \cdot \boldsymbol{u})\notag\\
\amp = \leq ||\boldsymbol{u}||^2 ||\boldsymbol{v}||^2 - 2 ||\boldsymbol{u}|| \, ||\boldsymbol{v}|| (\boldsymbol{v} \cdot \boldsymbol{u})
+ ||\boldsymbol{v}||^2 ||\boldsymbol{v}||^2\notag\\
\amp = \qquad \qquad \text{divide through by $||\boldsymbol{u}|| \, ||\boldsymbol{v}||$} \notag\\
\amp \leq 2||\boldsymbol{u}|| \, ||\boldsymbol{v}|| - 2 (\boldsymbol{v} \cdot \boldsymbol{u}) \tag{1.6.2}
\end{align}
Adding
\(||\boldsymbol{u} + \boldsymbol{v}||^2 = (\boldsymbol{u}+\boldsymbol{v}) \cdot (\boldsymbol{u}+\boldsymbol{v})\) to both sides
\begin{align*}
||\boldsymbol{u} +\boldsymbol{v}||^2 \amp \leq (\boldsymbol{u}+\boldsymbol{v}) \cdot (\boldsymbol{u}+\boldsymbol{v}) +
2||\boldsymbol{u}|| ||\boldsymbol{v}|| - 2 (\boldsymbol{v} \cdot \boldsymbol{u}) \\
\amp = \boldsymbol{u} \cdot \boldsymbol{u} + 2 \boldsymbol{u} \cdot \boldsymbol{v} + \boldsymbol{v} \cdot \boldsymbol{v} +
2||\boldsymbol{u}|| ||\boldsymbol{v}|| - 2 (\boldsymbol{v} \cdot \boldsymbol{u}) \\
\amp = ||\boldsymbol{u}||^2 + 2 ||\boldsymbol{u}||\,||\boldsymbol{v}|| + ||\boldsymbol{v}||^2\\
\amp = (||\boldsymbol{u}|| + ||\boldsymbol{v}||)^2
\end{align*}
and lastly, taking the square root of both sides
\begin{equation*}
||\boldsymbol{u} + \boldsymbol{v}|| \leq ||\boldsymbol{u}|| + ||\boldsymbol{v}||
\end{equation*}
To show equality, assume that
\(||\boldsymbol{v}|| \neq 0\text{,}\)
\begin{align*}
||\boldsymbol{u}||\boldsymbol{v} - ||\boldsymbol{v}|| \boldsymbol{u} \amp = 0 \\
\text{or} \qquad \qquad \amp \\
\boldsymbol{u} \amp = \frac{||\boldsymbol{u}||}{||\boldsymbol{v}||} \boldsymbol{v}
\end{align*}
therefore
\(\boldsymbol{u}\) is a scalar multiple of
\(\boldsymbol{v}\text{.}\)