First, note that if either
\(\vec{u} = \vec{0}\) or
\(\vec{v} = \vec{0}\text{,}\) then then
(1.6.1) holds.
Therefore, assume that neither
\(\vec{u}\) nor
\(\vec{v}\) is the zero vector. Then create the vector
\begin{equation*}
||\vec{u}|| \vec{v} - ||\vec{v}||\vec{u}.
\end{equation*}
The square of the length of this is nonnegative.
\begin{align}
0 \leq \amp ||(||\vec{u}|| \vec{v} - ||\vec{v}||\vec{u})||^2 \notag\\
\amp = (||\vec{u}|| \vec{v} - ||\vec{v}||\vec{u}) \cdot (||\vec{u}|| \vec{v} - ||\vec{v}||\vec{u})\notag\\
\amp = (||\vec{u} || \vec{v}) \cdot (||\vec{u}|| \vec{v}) - (||\vec{u}|| \vec{v}) \cdot (||\vec{v}|| \vec{u})
- (||\vec{v} || \vec{u}) \cdot (||\vec{u}|| \vec{v}) + (||\vec{v}|| \vec{u}) \cdot (||\vec{v}|| \vec{u})\notag\\
\amp \qquad \qquad\text{using properties of the dot product}\notag\\
\amp = ||\vec{u}||^2 (\vec{v} \cdot \vec{v}) - 2 (||\vec{u}||\vec{v} \cdot ||\vec{v}|| \vec{u})
+ ||\vec{v}||^2 (\vec{u} \cdot \vec{u})\notag\\
\amp = \leq ||\vec{u}||^2 ||\vec{v}||^2 - 2 ||\vec{u}|| \, ||\vec{v}|| (\vec{v} \cdot \vec{u})
+ ||\vec{v}||^2 ||\vec{v}||^2\notag\\
\amp = \qquad \qquad \text{divide through by $||\vec{u}|| \, ||\vec{v}||$} \notag\\
\amp \leq 2||\vec{u}|| \, ||\vec{v}|| - 2 (\vec{v} \cdot \vec{u}) \tag{1.6.2}
\end{align}
Adding
\(||\vec{u} + \vec{v}||^2 = (\vec{u}+\vec{v}) \cdot (\vec{u}+\vec{v})\) to both sides
\begin{align*}
||\vec{u} +\vec{v}||^2 \amp \leq (\vec{u}+\vec{v}) \cdot (\vec{u}+\vec{v}) +
2||\vec{u}|| ||\vec{v}|| - 2 (\vec{v} \cdot \vec{u}) \\
\amp = \vec{u} \cdot \vec{u} + 2 \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} +
2||\vec{u}|| ||\vec{v}|| - 2 (\vec{v} \cdot \vec{u}) \\
\amp = ||\vec{u}||^2 + 2 ||\vec{u}||\,||\vec{v}|| + ||\vec{v}||^2\\
\amp = (||\vec{u}|| + ||\vec{v}||)^2
\end{align*}
and lastly, taking the square root of both sides
\begin{equation*}
||\vec{u} + \vec{v}|| \leq ||\vec{u}|| + ||\vec{v}||
\end{equation*}
To show equality, assume that
\(||\vec{v}|| \neq 0\text{,}\)
\begin{align*}
||\vec{u}||\vec{v} - ||\vec{v}|| \vec{u} \amp = 0 \\
\text{or} \qquad \qquad \amp \\
\vec{u} \amp = \frac{||\vec{u}||}{||\vec{v}||} \vec{v}
\end{align*}
therefore
\(\vec{u}\) is a scalar multiple of
\(\vec{v}\text{.}\)