One can show that if we consider the vector representation in the basis:
\begin{equation*}
B = \biggl( \begin{bmatrix}
1 \amp0 \\ 0 \amp 0
\end{bmatrix}, \begin{bmatrix}
0 \amp1 \\ 0 \amp 0
\end{bmatrix}, \begin{bmatrix}
0 \amp0 \\ 1 \amp 0
\end{bmatrix}, \begin{bmatrix}
0 \amp0 \\ 0 \amp 1
\end{bmatrix} \biggr)
\end{equation*}
\begin{equation*}
\text{Rep}_B \biggl( \begin{bmatrix}
a \amp b \\ c \amp d
\end{bmatrix} \biggr) = \begin{bmatrix}
a \\ b \\ c \\ d
\end{bmatrix}
\end{equation*}
and the map
\(R\) can be represented by the matrix as
\begin{equation*}
A_R = \begin{bmatrix}
0 \amp 1 \amp 0 \amp 0 \\
0 \amp 0 \amp 0 \amp 1 \\
1 \amp 0 \amp 0 \amp 0 \\
0 \amp 0 \amp 1 \amp 0
\end{bmatrix}
\end{equation*}
We now find the eigenvalues and eigenvectors of this. The eigenvalue-eigenvector pairs are
\begin{align*}
\lambda_1 \amp = 1 \amp \vec{v}_1 \amp = \begin{bmatrix}
1 \\ 1 \\ 1 \\1
\end{bmatrix} \amp
\lambda_2 \amp = -1 \amp \vec{v}_2 \amp = \begin{bmatrix}
1 \\ -1 \\ -1 \\ 1
\end{bmatrix}, \\
\lambda_3 \amp = i \amp \vec{v}_3 \amp = \begin{bmatrix}
1 \\ -i \\ i \\ -1
\end{bmatrix} \amp
\lambda_4 \amp = -i \amp \vec{v}_4 \amp = \begin{bmatrix}
1 \\ i \\ -i \\ -1
\end{bmatrix}
\end{align*}
To translate this back to the map that rotates the matrix, we translate each of the eigenvectors to the matrix that it represents. For example,
\(\vec{v}_1\) is the matrix
\begin{equation*}
\begin{bmatrix}
1 \amp 1 \\ 1 \amp 1
\end{bmatrix}
\end{equation*}
and if that matrix is rotated, you get it back and the eigenvalue is 1. The second eigenvector can be written as the matrix
\begin{equation*}
\begin{bmatrix}
1 \amp -1 \\ -1 \amp 1
\end{bmatrix}
\end{equation*}
and if you rotate this matrix, you get the matrix
\begin{equation*}
\begin{bmatrix}
-1\amp 1 \\ 1 \amp -1
\end{bmatrix}
\end{equation*}
which is the above matrix multiplied by the eigenvalue
\(\lambda_2=-1\text{.}\) In other words:
\begin{equation*}
R\left(
\begin{bmatrix}
1 \amp -1 \\ -1 \amp 1
\end{bmatrix} \right) = - \begin{bmatrix}
1 \amp -1 \\ -1 \amp 1
\end{bmatrix}
\end{equation*}
The other two work in a similar manner, however complex numbers are needed.