First note that
\(r(x)=q(x) \equiv 1\) and also
\(a_1=b_1=1\) and
\(a_2=b_2=0\text{,}\) which satisfies the conditions on the boundaries. The characteristic equation for this problem is:
\begin{equation*}
r^2+\lambda = 0
\end{equation*}
which has the solutions
\(r = \pm \sqrt{-\lambda}\text{.}\) The form of the equation depends on
\(\lambda\text{.}\) If
\(\lambda=0\text{,}\) we get:
\begin{equation}
y = A + B x\tag{7.4.1}
\end{equation}
if
\(\lambda < 0\text{,}\) then the solution is
\begin{equation}
y = c_1 e^{\sqrt{-\lambda} x} + c_2 e^{-\sqrt{-\lambda} x}\tag{7.4.2}
\end{equation}
and if
\(\lambda > 0\text{,}\) then we get
\begin{equation}
y = C_1 \cos \sqrt{\lambda} x + C_2 \sin \sqrt{\lambda} x\tag{7.4.3}
\end{equation}
Next, we apply the boundary conditions on all three solutions. Recall that
\(y(0)=y(L)=0\text{.}\) If
\(\lambda = 0\text{,}\) substituting the boundary conditions into
(7.4.1),
\begin{align*}
A+ B(0)\amp = 0 \amp\amp \text{so $A=0$}\\
A+B(L) \amp = 0 \amp\amp \text{so $B=0$}
\end{align*}
so the only solution to
(7.4.1) is the trivial solution
\(y\equiv 0\text{.}\) If
\(\lambda > 0\text{,}\) then substituting the boundary conditions into
(7.4.2) results in
\begin{align*}
c_1 (1) + c_2(1) \amp = 0 \\
c_1(e^{\sqrt{-\lambda} L} + c_2 e^{-\sqrt{-\lambda} L}) \amp = 0
\end{align*}
From the first equation,
\(c_1=-c_2\) and substituting this into the 2nd equation
\begin{align*}
c_1 e^{\sqrt{-\lambda} L} - c_1 e^{-\sqrt{-\lambda} L} \amp = 0 \\
c_1 e^{\sqrt{-\lambda}L} \bigl( 1- e^{-2\sqrt{-\lambda} L}) \amp = 0
\end{align*}
\(c_1=0\) is a solution, the second term is never zero and the third term is only zero if
\(L=0\text{,}\) which is not true or
\(\lambda=0\text{,}\) which is also not true, since this case is
\(\lambda > 0\text{.}\) Therefore again, the only solution to
(7.4.2) is the trivial solution. If
\(\lambda < 0\) then substituting the boundary conditions into
(7.4.3) results in
\begin{align*}
C_1 (1) + C_2 (0) \amp = 0 \amp\amp \text{so $C_1=0$} \\
(0) \cos \sqrt{\lambda} L + C_2 \sin \sqrt{\lambda} L = 0
\end{align*}
the second states that either
\(C_2=0\text{,}\) again the trivial solution or
\begin{equation*}
\sin \sqrt{\lambda} L = 0
\end{equation*}
which occurs if
\(\sqrt{\lambda} L = n \pi\) for
\(n=0,\pm 1, \pm 2, \pm 3, \ldots\text{.}\) Or
\begin{equation}
\lambda = \frac{n^2 \pi^2}{L^2}\tag{7.4.4}
\end{equation}
We now check which values of
\(n\) result in valid values of
\(\lambda\text{.}\) When
\(n=0\text{,}\) we get
\(\lambda=0\) again, which violates
\(\lambda \lt; 0\) and for
\(n\) both plus and minus the same number, we get the same eigenvalue, so we will discard the negative values of
\(n\) and just include
\(n=1,2,3, \ldots.\) The eigenvalues of this problem are those in
(7.4.4) for
\(n=1,2,3,\ldots\)and the eigenfunctions of this problem are:
\begin{equation*}
\phi_n(x) = \sin \frac{n\pi x}{L}
\end{equation*}