Following the steps above, the LU decomposition is
\begin{align*}
L \amp = \begin{bmatrix}
1 \amp 0 \amp 0 \\ 2/3 \amp 1 \amp 0 \\
0 \amp -2 \amp 1
\end{bmatrix} \amp U \amp = \begin{bmatrix}
3 \amp 3 \amp -1 \\
0 \amp -1 \amp -7/3 \\
0 \amp 0 \amp 1/3
\end{bmatrix}
\end{align*}
and we will solve
\(A\vec{x}=LU\vec{x}=\vec{e}_j\text{,}\) where
\(\vec{e}_j\) is the
\(j\)th column of the 3 by 3 identity matrix.
Solving
\(LU\vec{x} = \vec{e}_1\) by solving
\(L\vec{y}_1 = (1,0,0)^{\intercal}\) or
\begin{equation*}
\vec{y_1} = \begin{bmatrix}
1 \\ -2/3 \\ -4/3
\end{bmatrix}
\end{equation*}
then solve
\(U\vec{x}_1 = \vec{y}_1\) for
\(\vec{x}_1\) or
\begin{equation*}
\vec{x}_1 = \begin{bmatrix}
-11 \\ 10 \\ -4
\end{bmatrix}
\end{equation*}
Repeating this for
\(\vec{b}=\vec{e}_2\text{,}\) first solving
\(L\vec{y}_2 =
(0,1,0)^{\intercal}\) or
\begin{equation*}
\vec{y}_2 = \begin{bmatrix}
0 \\ 1 \\ 2
\end{bmatrix}
\end{equation*}
then solve
\(U\vec{x}_2 = \vec{y}_2\) for
\(\vec{x}_2\) or
\begin{equation*}
\vec{x}_2 = \begin{bmatrix}
17 \\ -15 \\ 6
\end{bmatrix}
\end{equation*}
and lastly, solve
\(L\vec{y}_3 = (0,0,1)^{\intercal}\) or
\begin{equation*}
\vec{y}_3 = \begin{bmatrix}
0 \\ 0 \\ 1
\end{bmatrix}
\end{equation*}
and solving
\(U\vec{x}_3 = \vec{y}_3\) results in
\begin{equation*}
\vec{x}_3 = \begin{bmatrix}
8 \\ -7 \\ 3
\end{bmatrix}
\end{equation*}
The inverse matrix is then the matrix with
\(\vec{x}_j\) as the columns or
\begin{equation*}
A^{-1} = \begin{bmatrix}
-11 \amp 17 \amp 8 \\
10 \amp -15 \amp -7 \\
-4 \amp 6 \amp 3
\end{bmatrix}
\end{equation*}