In the case, it is the set formed by the linear combination or specifically
\begin{equation*}
\left\{ c_1 \begin{bmatrix}
1 \\ 0
\end{bmatrix} + c_2 \begin{bmatrix}
1 \\ 1
\end{bmatrix} + c_3 \begin{bmatrix}
0 \\ 1
\end{bmatrix} \; | \; c_1, c_2, c_3 \in \mathbb{R} \right\}
\end{equation*}
and it seems that this set is also
\(\mathbb{R}^2\text{.}\) In order to show this, weβll take
\(x_1,
x_2 \in \mathbb{R}\text{,}\) we will solve
\begin{equation*}
c_1 \begin{bmatrix}
1 \\ 0
\end{bmatrix} + c_2 \begin{bmatrix}
1 \\ 1
\end{bmatrix} + c_3 \begin{bmatrix}
0 \\ 1
\end{bmatrix} = \begin{bmatrix}
x_1 \\ x_2
\end{bmatrix}
\end{equation*}
and this can be solved with the linear system
\begin{align*}
c_1 + c_2 \amp = x_1\\
c_2 + c_3 \amp = x_2.
\end{align*}
If we take
\(c_3\) as the free variable, we get
\begin{align*}
c_2 \amp = x_2 - c_3 \\
c_1 \amp = x_1 -c_2 = x_1 - (x_2-c_3) = x_1 - x_2 + c_3
\end{align*}
and since there is a solution, these vectors span
\(\mathbb{R}^2\text{.}\) It appears that adding another vector does not change the span. This actually does not depend on this vector, but weβll need information in the next section to show this.