Definition 3.4.1. Linear Transformation.
Let \(V\) and \(W\) be vector spaces. A linear transformation or linear map \(T\) from \(V\) to \(W\) is a function that assigns to each vector \(\boldsymbol{v}
\in V\) a unique vector \(T\boldsymbol{v} \in W\) and that satisfies for each \(\boldsymbol{u}\) and \(\boldsymbol{v}\) in \(V\) and each scalar \(\alpha\text{,}\)
\begin{align}
(\boldsymbol{u} + \boldsymbol{v}) \amp = T(\boldsymbol{u}) + T
(\boldsymbol{v}), \tag{3.4.1}\\
T(\alpha \boldsymbol{v}) \amp = \alpha T
(\boldsymbol{v}), \tag{3.4.2}
\end{align}
