Skip to main content

Applied Mathematics

Section 7.8 The Heat Equation in a Circular Region

Next, we examine how to solve the heat equation in a circular region: \(\{ (x,y) | x^2+y^2 \leq R^2 \}\) as shown in the following figure.
Figure 7.8.1. A circular region where a point is written in polar coordinates.
Instead of solving the equation in cartesian coordinates, we look to write the heat equation in \emph{polar coordinates}. A point in polar coordinates is labelled \((r,\theta)\) where
\begin{align*} r \amp = \sqrt{x^2+y^2} \amp \theta \amp = \tan^{-1} \frac{y}{x} \end{align*}
or written as \(x\) and \(y\) in terms of \(r\) and \(\theta\text{,}\)
\begin{align*} x \amp = r \cos \theta \amp y \amp = r \sin \theta . \end{align*}
To convert the heat equation to polar coordinates, we need to write the right hand side of ((7.6.1)) or
\begin{equation*} \frac{\partial^2 u}{\partial {x}^2} + \frac{\partial^2 u}{\partial {y}^2} \end{equation*}
in terms of \(r\) and \(\theta\text{.}\) This is basically an exercise in using the chain rule with multiple independent variables. We start by finding the first partial derivatives of \(u\) with respect to \(x\) and \(y\text{.}\)
\begin{align*} u_x = \frac{\partial u}{\partial x} \amp = \frac{\partial u}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial x} = u_r r_x + u_{\theta} \theta_x \\ u_y = \frac{\partial u}{\partial y} \amp = \frac{\partial u}{\partial r} \frac{\partial r}{\partial y}+ \frac{\partial u}{\partial \theta} \frac{\partial \theta}{\partial y} = u_r r_y + u_{\theta} \theta_y \end{align*}
and differentiating again, we get:
\begin{align*} u_{xx} \amp = (u_r r_x)_x + (u_{\theta} \theta_x)_x \qquad\text{using the product rule}\\ \amp = (u_r)_x r_x + u_r r_{xx} + (u_\theta)_x \theta_x + u_{\theta} \theta_{xx} \\ \amp = (u_{rr} r_x + u_{r\theta} \theta_x) r_x + u_r r_{xx} + (u_{\theta r} r_x + u_{\theta\theta} \theta_x) \theta_x + u_{\theta} \theta_{xx} \end{align*}
and similarly,
\begin{align*} u_{yy} \amp =(u_rr_y)_y +(u_{\theta}\theta_y) _y \\ \amp = (u_r)_y r_y + u_r r_{yy} + (u_{\theta})_y \theta_y + u_{\theta} \theta_{yy} \\ \amp = (u_{rr} r_y + u_{r\theta} \theta_y )r_y + u_r r_{yy} + (u_{r\theta} r_y + u_{\theta\theta} \theta_y) \theta_y + u_{\theta} \theta_{yy} \end{align*}
To complete this, we need to find \(r_x, \theta_x, r_{xx}, \theta_{xx}\)
\begin{align*} r_x \amp = \frac{x}{\sqrt{x^2+y^2}} = \frac{x}{r} \\ r_{xx} \amp = \frac{\partial }{\partial x} \frac{x}{r} = \frac{r -x r_x}{r^2} = \frac{r-x(x/r)}{r^2} = \frac{r^2-x^2}{r^3} = \frac{y^2}{r^3} \\ \theta_{x} \amp = \frac{1}{1+(y/x)^2} \frac{\partial }{\partial x} \biggl(\frac{y}{x}\biggr) = \frac{x^2}{x^2+y^2} \biggl( -\frac{y}{x^2} \biggr) = -\frac{y}{r^2} \\ \theta_{xx} \amp = \frac{\partial }{\partial x} \biggl( -\frac{y}{r^2} \biggr) = -y \frac{-2}{r^3} \frac{\partial r}{\partial x} = \frac{2y}{r^3} \frac{x}{r} = \frac{2xy}{r^4} \end{align*}
as well as \(r_y, \theta_y, r_{yy}\) and \(\theta_{yy}\text{.}\)
\begin{align*} r_y \amp = \frac{y}{\sqrt{x^2+y^2}} = \frac{y}{r} \\ r_{yy} \amp = \frac{\partial }{\partial y} \biggl( \frac{y}{r} \biggr) = \frac{r - y\frac{\partial r}{\partial y} }{r^2} = \frac{r-y(y/r)}{r^2} = \frac{r^2-y^2}{r^3} = \frac{x^2}{r^3} \\ \theta_y \amp = \frac{1}{1+(y/x)^2} \frac{\partial }{\partial y} \biggl(\frac{y}{x}\biggr) = \frac{x^2}{x^2+y^2} \biggl( \frac{1}{x} \biggr) = \frac{x}{r^2} \\ \theta_{yy} \amp = \frac{\partial }{\partial y}\biggl( \frac{x}{r^2} \biggr) = x \biggl( \frac{-2}{r^3}\biggr) \frac{\partial r}{\partial y} = \frac{-2x}{r^3} \cdot \frac{y}{r} = -\frac{2xy}{r^4} \end{align*}
So now we write \(u_{xx}+u_{yy}\)
\begin{align*} u_{xx} \amp = \biggl(u_{rr} \frac{x}{r} + u_{r\theta} \biggl(-\frac{y}{r^2} \biggr) \biggr)\frac{x}{r} + u_r \frac{y^2}{r^3} + \biggl(u_{r\theta}\frac{x}{r} + u_{\theta\theta}\biggl(-\frac{y}{r^2} \biggr) \biggr)\biggl(-\frac{y}{r^2} \biggr) \\ \amp \qquad \qquad + u_{\theta}\frac{2xy}{r^4} \\ u_{yy} \amp = \biggl(u_{rr} \frac{y}{r} + u_{r\theta} \frac{x}{r^2} \biggr)\frac{y}{r} + u_r \frac{x^2}{r^3} + \biggl(u_{r \theta}\frac{y}{r} + u_{\theta\theta} \frac{x}{r^2} \biggr) \frac{x}{r^2} + u_{\theta}\frac{-2xy}{r^4} \\ u_{xx}+u_{yy} \amp = u_{rr} \frac{x^2+y^2}{r^2} + u_{r\theta} \biggl(-\frac{xy}{r^3} + \frac{xy}{r^3} \biggr) + u_r \biggl( \frac{y^2+x^2}{r^3}\biggr) \\ \amp \qquad \qquad + u_{r \theta} \biggl(-\frac{xy}{r^3} + \frac{xy}{r^3} \biggr) + u_{\theta \theta}\biggl(\frac{y^2}{r^4} + \frac{x^2}{r^4} \biggr) + u_{\theta} \biggl( \frac{2xy}{r^4} - \frac{2xy}{r^4} \biggr) \\ \amp = u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} \end{align*}
Thus the heat equation in polar coordinates is
\begin{equation} \frac{1}{\kappa} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial {r}^2} + \frac{1}{r} \frac{\partial u}{\partial r}+ \frac{1}{r^2} \frac{\partial^2 u}{\partial {\theta}^2} \label{eq:heat:eqn:polar}\tag{7.8.1} \end{equation}
Before solving this equation in general, we will examine a simpler equation that is related.

Subsection 7.8.1 Rotationally Symmetric Solutions

The general case is a bit hard to deal with, so we first start with a rotationally symmetric solution, which means that there is no \(\theta\) dependence. Thus the term \(\frac{\partial^2 u}{\partial {\theta}^2} =0\) and the heat equation becomes:
\begin{equation*} \frac{1}{\kappa} \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial {r}^2} + \frac{1}{r} \frac{\partial u}{\partial r} \end{equation*}
To solve this using separation of variables, let \(u(r,t)=T(t) R(r)\) and substitution into the PDE:
\begin{align*} \frac{1}{\kappa} T'R \amp = TR'' + \frac{1}{r} R' T \amp\amp \text{divide by $RT$} \\ \frac{1}{\kappa} \frac{T'}{T} \amp = \frac{r R'' + R'}{r R} \end{align*}
As before, the only way that the left hand side can equal the right hand side is if each side only depends on a constant or
\begin{align*} r R'' + R' \amp = -\lambda r R \amp T' + \lambda \kappa T \amp = 0 \end{align*}
The boundary conditions become \(R(L)=0\) and \(R(0)\) is finite, so we get the Sturm-Liouville problem:
\begin{align*} r R'' + R' + \lambda r R \amp = 0, \amp R(L)\amp = 0, \qquad R(0) \text{ is finite} \end{align*}
This is a difficult problem to solve in that letting \(R(r) = e^{pr}\) does not work. There are techniques to solve this, but let’s use Maple to get:
\begin{equation*} R(r) = c_1 J_0(\sqrt{\lambda} r) + c_2 Y_0(\sqrt{\lambda} r) \end{equation*}
where \(J_0\) and \(Y_0\) are bessel functions.

Subsection 7.8.2 Solving the Sturm-Liouville Problem

If we apply the first ``boundary’’ condition that \(R(0)\) must be finite, we take that \(c_2=0\) since \(Y_0(x)\) is not finite at \(x=0\text{.}\) The next boundary condition is \(R(L)=0\) or
\begin{equation*} R(L) = c_1 J_0(\sqrt{\lambda} L) = 0 \end{equation*}
and let \(\sigma_n\) be the \(n\)th root of \(J_0(x)\text{.}\) so
\begin{align*} \sqrt{\lambda} L \amp = \sigma_n \\ \lambda \amp = \frac{\sigma_n^2}{L^2} \end{align*}
are the eigenvalues of the problem with eigenfunctions:
\begin{equation*} R_n(r) = J_0\biggl(\frac{\sigma_n x}{L}\biggr) \end{equation*}
Next, the solution to
\begin{equation*} T' + \kappa \lambda T = 0 \end{equation*}
\begin{equation*} T_n = e^{-\kappa \sigma_n t/L} \end{equation*}
The full solution is
\begin{align*} u \amp = \sum_{n=1}^{\infty} u_n(r,t) \\ \amp = \sum_{n=1}^{\infty} c_n J_0\biggl(\frac{\sigma_n x}{L} \biggr) e^{-\kappa \sigma_n t/L} \end{align*}
Lastly, using the initial condition, we get:
\begin{equation*} u(r,0) = f(r) =\sum_{n=1}^{\infty} c_n J_0\biggl(\frac{\sigma_n r}{L} \biggr) \end{equation*}
which is a Fourier-type series with
\begin{equation*} c_n = \frac{\int_0^L r f(r) J_0(\sigma_n r/L) \, dr}{\int_0^{L} r J_0^2(\sigma_n r/L) \, dr} \end{equation*}

Example 7.8.2.

Find the solution using the initial condition \(f(r)=1-r\) and let \(L=1\text{.}\)
Solution.
Again, we need only to find the Fourier Coefficients. The first three are:
\begin{align*} c_1 \amp = \frac{\int_0^1 r(1-r) J_0(\sigma_1 r) \, dr}{\int_0^1 r J_0^2(\sigma_1 r) \, dr} = 0.7845194227 \\ c_2 \amp = \frac{\int_0^1 r(1-r) J_0(\sigma_2 r) \, dr}{\int_0^1 r J_0^2(\sigma_2 r) \, dr} = 0.06868885655\\ c_3 \amp = \frac{\int_0^1 r(1-r) J_0(\sigma_3 r) \, dr}{\int_0^1 r J_0^2(\sigma_3 r) \, dr} = 0.05311413893 \end{align*}
So the solution is
\begin{equation*} u(r,t) = \sum_{n=1}^{\infty}c_n J_0(\sigma_n r) e^{-\kappa \sigma_n t} \end{equation*}

Subsection 7.8.3 General Circular Heat Equation

To solve this (as we have seen before) we will use separation of variables. Let \(u = T(t) \Theta(\theta) R(r)\text{:}\)
\begin{align*} T'\Theta R \amp= R'' T\Theta+ \frac{1}{r} R' T \Theta + \frac{1}{r^2} R T \Theta'' \amp\amp\text{divide by $RT\Theta$} \\ \frac{T'\Theta R}{RT\Theta} \amp= \frac{R'' T\Theta+ \frac{1}{r} R' T \Theta + \frac{1}{r^2} R T \Theta'' }{RT\Theta} \\ \frac{T'}{T} \amp = \frac{R''}{R} + \frac{1}{r} \frac{R'}{R} + \frac{1}{r^2} \frac{\Theta''}{\Theta} \end{align*}
Assume that
\begin{equation*} \frac{\Theta''}{\Theta} = -\lambda \end{equation*}
and then the right hand side becomes:
\begin{equation*} \frac{R''}{R} + \frac{1}{r} \frac{R'}{R} - \frac{\lambda}{r^2} = \nu \end{equation*}
mulitply through by \(r^2\) and rearrange
\begin{equation*} r^2 R'' + r R' + (r^2 \nu - \lambda) R = 0 \end{equation*}

Subsection 7.8.4 Sturm-Liouville Problems from the heat equation

The first Sturm-Liouville problem is:
\begin{equation*} \Theta'' + \lambda \Theta = 0 \end{equation*}
and \(\Theta(0) = \Theta(2\pi)\) as well as \(\Theta'(0) = \Theta'(2\pi)\text{.}\) If \(\lambda < 0\text{,}\) then \(\Theta(\theta) = c_1 e^{-\sqrt{-\lambda} \theta} + c_2 e^{\sqrt{-\lambda} \theta}\text{.}\) No solution of this exists that satsifies the boundary conditions. If \(\lambda = 0\text{,}\) then \(\Theta(\theta) = c_1 + c_2 \theta\text{.}\) To satisfy the boundary conditions \(\Theta(\theta) = c_1\text{.}\) If \(\lambda > 0\text{,}\) then \(\Theta(\theta) = c_1 \cos \sqrt{\lambda} \theta + c_2 \sin \sqrt{\lambda} \theta\text{.}\)
\begin{equation*} \Theta (0) = c_1 = \Theta(2\pi) = c_1 \cos 2\pi\sqrt{\lambda} + c_2 \sin 2\pi \sqrt{\lambda} \end{equation*}
which is satisfied when \(\lambda = n^2\text{,}\) for \(n=1,2,3,\ldots\text{.}\) The derivative of \(\Theta\) is
\begin{equation*} \Theta(\theta) = -n c_1 \sin n \theta + n c_2 \cos n\theta \end{equation*}
The second boundary condition:
\begin{equation*} \Theta'(0) = n c_2 \cos (0) = \Theta'(2\pi) = -n c_1(0) + n c_2 \cos 2\pi n \end{equation*}
which is satisfied. Thus
\begin{align*} \Theta(\theta) \amp = 1 \amp \Theta(\theta) \amp= \sin n \theta \amp \amp \text{and} \amp \Theta(\theta) \amp = \cos n \theta \end{align*}
each satisfy the boundary condition. The next differential equation is
\begin{equation*} r^2 R''+ r R' + (r^2 \nu-n^2) R = 0 \end{equation*}
The solution of this is
\begin{equation*} R(r) = c_1 J_n(\sqrt{\nu} r) + c_2 Y_n(\sqrt{\nu} r) \end{equation*}
and the boundary conditions are \(R(0)\) is finite and \(R(L)=0\text{.}\) The condition at \(r=0\) sets \(c_2=0\) and the other condition:
\begin{equation*} 0 = c_1 J_n(\sqrt{\nu}L) \end{equation*}
results in
\begin{equation*} \sqrt{\nu} L = \sigma_{n,i} \end{equation*}
where \(\sigma_{n,i}\) is the \(i\)th root of \(J_n(x)\text{.}\) Thus the eigenvalue is
\begin{equation*} \nu = \frac{\sigma_{n,i}^2}{L^2} \end{equation*}
and the eigenfunction is
\begin{equation*} J_n\biggl(\frac{\sigma_{n,i} r}{L} \biggr) \end{equation*}
The last DE is
\begin{equation*} \frac{1}{\kappa} \frac{T'}{T} = \nu = \frac{\sigma_{n,i}^2}{L^2} \end{equation*}
of which the solution is:
\begin{equation*} T = e^{-\kappa (\sigma_{n,i}^2/L^2) t} \end{equation*}
\begin{align*} u_{0,i} \amp = J_0\biggl(\frac{\sigma_{0,i} r}{L} \biggr) e^{-\kappa (\sigma_{0,i}^2/L^2) t} \\ u_{n,i} \amp = R_{n,i}(r) \Theta_n T_{n,i} \\ \amp = J_n\biggl(\frac{\sigma_{n,i} r}{L} \biggr) (a_n \cos n \theta + b_n \sin \theta) e^{-\kappa (\sigma_{n,i}^2/L^2) t} \end{align*}
and using the principle of superposition the full solution is:
\begin{align*} u(r,\theta,t) \amp = \sum_{i=1}^{\infty} a_0 J_0\biggl(\frac{\sigma_{0,i} r}{L} \biggr) e^{-\kappa (\sigma_{0,i}^2/L^2) t} + \\ \amp \qquad \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} J_n\biggl(\frac{\sigma_{n,i} r}{L} \biggr) ( a_n \cos n \theta + b_n \sin \theta) e^{-\kappa (\sigma_{n,i}^2/L^2) t} \end{align*}
Finding the coefficients. In this case we use the initial condition that
\begin{equation*} u(r,\theta,0) = f(r,\theta) \end{equation*}
and substituting into the solution:
\begin{equation*} f(r,\theta) = \sum_{i=1}^{\infty} a_0 J_0\biggl(\frac{\sigma_{0,i} r}{L} \biggr) + \sum_{i=1}^{\infty} \sum_{n=1}^{\infty} J_n\biggl(\frac{\sigma_{n,i} r}{L} \biggr) ( a_n \cos n \theta + b_n \sin \theta) \end{equation*}
The coefficients are:
\begin{align*} a_{0,i} \amp = \frac{\int_0^L \int_0^{2\pi} r f(r,\theta) J_0(\sigma_{0,i} r/L) \,d\theta \, dr} {2\pi \int_0^L r J_0(\sigma_{0,i} r/L)^2 \, dr}\\ a_{n,i} \amp = \frac{\int_0^L \int_0^{2\pi} r f(r,\theta) J_n(\sigma_{n,i} r/L)\cos n\theta \,d\theta \, dr} {\pi \int_0^L r J_n(\sigma_{0,i} r/L)^2 \, dr} \\ b_{n,i} \amp = \frac{\int_0^L \int_0^{2\pi} r f(r,\theta) J_n(\sigma_{n,i} r/L)\sin n\theta \,d\theta \, dr} {\pi \int_0^L r J_n(\sigma_{0,i} r/L)^2 \, dr} \end{align*}

Example 7.8.3.

Solve the equation above when \(f(r,\theta) = J_1(\sigma_{1,1} r) \sin \theta\text{.}\) Use \(\kappa=0.04\) and \(L=1\text{.}\)
Solution.
Again, we just need to compute the coefficients above. Use can either use Maple or make a symmetry argument to see that
\begin{align*} a_{0,i} \amp = 0 \\ a_{n,i} \amp = 0 \\ b_{1,1} \amp = 1 \\ a_{n,i} \amp = 0 \qquad n \neq 1, i \neq 1. \end{align*}
So the solution is
\begin{equation*} u(r, \theta,t) = J_1(\sigma_{1,1} r) \sin \theta e^{-0.04 \sigma{1,1}^2 t} \end{equation*}