In this example, we will first find the columns of
\(V\) by the eigenvectors of
\(A^{\intercal}A\text{.}\) Generally, if the original matrix is not square, one should select the larger matrix between
\(AA^{\intercal}\) and
\(A^{\intercal}A\text{.}\)
\begin{equation*}
A^{\intercal}A = \begin{bmatrix}
8 \amp 0 \amp 0 \\
0 \amp 18 \amp 18 \\
0 \amp 18 \amp 18
\end{bmatrix}
\end{equation*}
and the eigenvalues of
\(A^{\intercal}A\) is found by
\begin{align*}
\det(A^{\intercal}A-\lambda I) \amp = \begin{vmatrix}
8-\lambda \amp 0 \amp 0 \\
0 \amp 18-\lambda \amp 18 \\
0 \amp 18 \amp 18-\lambda
\end{vmatrix} = (8-\lambda)\bigl((18-\lambda)^2-18^2\bigr)\\
\amp = (8-\lambda)(\lambda^2-36\lambda) = 0
\end{align*}
which has the solutions
\(\lambda=8,36,0\text{.}\) Thus the singular values result in
\begin{equation*}
\Sigma = \begin{bmatrix}
\sqrt{8} \amp 0 \amp 0 \\
0 \amp 6 \amp 0
\end{bmatrix}
\end{equation*}
and recall that this matrix is always the same size as the original matrix,
\(A\text{.}\) Also, you will get zero eigenvalues whenever the matrix is not square. The corresponding eigenvectors are
\begin{align*}
\vec{v}_1 \amp = \begin{bmatrix}
1 \\ 0 \\ 0
\end{bmatrix}, \amp \vec{v}_2 \amp = \begin{bmatrix}
0 \\ 1 \\1
\end{bmatrix} \amp \vec{v}_3 \amp = \begin{bmatrix}
0 \\ -1 \\ 1
\end{bmatrix}
\end{align*}
And the matrix
\(V\) with the columns above scaled to make them unit vectors is
\begin{equation*}
V = \begin{bmatrix}
1 \amp 0 \amp 0 \\
0 \amp 1/\sqrt{2} \amp -1/\sqrt{2} \\
0 \amp 1/\sqrt{2} \amp 1/\sqrt{2}
\end{bmatrix}
\end{equation*}
To find
\(U\text{,}\) we will use (
(5.4.4)) and note that
\begin{equation*}
(\Sigma \Sigma^{\intercal})^{-1} = \begin{bmatrix}
1/8 \amp 0 \\
0 \amp 1/36
\end{bmatrix}
\end{equation*}
\begin{align*}
U \amp = A V \Sigma^{\intercal} (\Sigma \Sigma^{\intercal})^{-1} \\
\amp = \begin{bmatrix}
2 \amp -3 \amp -3 \\
2 \amp 3 \amp 3
\end{bmatrix} \begin{bmatrix}
1 \amp 0 \amp 0 \\
0 \amp 1/\sqrt{2} \amp -1/\sqrt{2} \\
0 \amp 1/\sqrt{2} \amp 1/\sqrt{2}
\end{bmatrix}\begin{bmatrix}
\sqrt{8} \amp 0 \\
0 \amp 6 \\
0 \amp 0
\end{bmatrix}\begin{bmatrix}
1/8 \amp 0 \\
0 \amp 1/36
\end{bmatrix} \\
\amp = \begin{bmatrix}
\sqrt{2}/2 \amp \sqrt{2}/2 \\
\sqrt{2}/2 \amp -\sqrt{2}/2
\end{bmatrix}
\end{align*}
and it can be checked that
\(U\Sigma V^{\intercal} = A\text{.}\)